261 research outputs found

    The workplace commons: towards understanding commoning within work relations

    Get PDF
    One of the most important focuses in social theory within the last decade has been upon the commons. We contribute to the emerging scholarship on the commons. We point out that this literature tends to neglect the workplace. We then argue that the workplace should be included as a potentially important arena of commoning. Going to studies of the workplace, we find that scholarship has implicitly found key emergent elements of commoning within the social relations of work. We develop a concept of the workplace commons, and consider arguments that the workplace commons is merely a fix for capitalism

    After-progress: commoning in degrowth

    Get PDF
    What does it mean to live with the threat of extinction? We make a case that living with the threat of extinction logically can only mean that we have to abandon the modernist ideology of progress. We review ideas of societal progress and note the decline in arguments relating to progress in the writings of political and social commentators. However, alive and well, and hidden in plain sight, is the current dominant ideology of progress – the central policy goal of governments to achieve growth in Gross Domestic Product. We must abandon this twisted ideology of progress. We point to two interrelated elements of a political economy of after-progress – degrowth and commoning. Currently, there are rich and vital literatures on degrowth and on commoning, but rarely do writers in these fields come into explicit dialogue with each other to see and develop a shared logic. We outline a political economy of degrowth as one centred on sustaining the commons, and contrast this with current arguments for green capitalism, centred on the idea of a Green New Deal. Competitive individualism is the central social relationship of capitalism, and is a social relationship that leads to the destruction of the commons. By contrast, commoning should be seen as the central social relationship of a degrowth economy. It is simultaneously a social relationship and an ecological relationship. It is a social ecological relationship to sustain the commons within a degrowth economy

    BVOC ecosystem flux measurements at a high latitude wetland site

    Get PDF
    In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs) measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC) technique based on a proton transfer reaction mass spectrometer (PTR-MS). The vegetation at the site was dominated by <i>Sphagnum</i>, <i>Carex</i> and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006), approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H<sub>3</sub>O<sup>+</sup>-ion cluster formed with water molecules (H<sub>3</sub>O<sup>+</sup>(H<sub>2</sub>O) at m37) with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations. <br><br> Standardised (20 °C and 1000 μmol m<sup>−2</sup> s<sup>−1</sup> PAR) summer isoprene emission rates found in this study of 329 μg C m<sup>−2</sup> (ground area) h<sup>−1</sup> were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (sub)tropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m<sup>−2</sup> h<sup>−1</sup> (ca. 100 μg C m<sup>−2</sup> h<sup>−1</sup>), and during most nights small negative fluxes directed from the atmosphere to the surface were observed

    Client abuse to public welfare workers: theoretical framework and critical incident case study

    Get PDF
    We analyse a case study of workers’ experience of client abuse in a Danish public welfare organisation. We make an original contribution by putting forward two different theoretical expectations of the case. One expectation is that the case follows a pattern of customer abuse processes in a social market economy – in which worker are accorded power and resources, in which workers tend to frame the abuse as the outcome of a co-citizen caught in system failure, and in which workers demonstrate some resilience to abuse. Another expectation is that New Public Management reforms push the case to follow patterns of customer abuse associated with a liberal market economy – in which the customer is treated as sovereign against the relatively powerless worker, and in which workers bear heavy emotional costs of abuse. Our findings show a greater match to the social processes of abuse within a social market economy

    Energy input is primary controller of methane bubbling in subarctic lakes

    Get PDF
    Emission of methane (CH4) from surface waters is often dominated by ebullition (bubbling), a transport mode with high‐spatiotemporal variability. Based on new and extensive CH4 ebullition data, we demonstrate striking correlations (r2 between 0.92 and 0.997) when comparing seasonal bubble CH4 flux from three shallow subarctic lakes to four readily measurable proxies of incoming energy flux and daily flux magnitudes to surface sediment temperature (r2 between 0.86 and 0.94). Our results after continuous multiyear sampling suggest that CH4 ebullition is a predictable process, and that heat flux into the lakes is the dominant driver of gas production and release. Future changes in the energy received by lakes and ponds due to shorter ice‐covered seasons will predictably alter the ebullitive CH4 flux from freshwater systems across northern landscapes. This finding is critical for our understanding of the dynamics of radiatively important trace gas sources and associated climate feedback

    A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO\u3csub\u3e2\u3c/sub\u3e and CH\u3csub\u3e4\u3c/sub\u3e fluxes

    Get PDF
    The northern terrestrial net ecosystem carbon balance (NECB) is contingent on inputs from vegetation gross primary productivity (GPP) to offset the ecosystem respiration (Reco) of carbon dioxide (CO2) and methane (CH4) emissions, but an effective framework to monitor the regional Arctic NECB is lacking. We modified a terrestrial carbon flux (TCF) model developed for satellite remote sensing applications to evaluate wetland CO2 and CH4 fluxes over pan-Arctic eddy covariance (EC) flux tower sites. The TCF model estimates GPP, CO2 and CH4 emissions using in situ or remote sensing and reanalysis-based climate data as inputs. The TCF model simulations using in situ data explained \u3e70% of the r2 variability in the 8 day cumulative EC measured fluxes. Model simulations using coarser satellite (MODIS) and reanalysis (MERRA) records accounted for approximately 69% and 75% of the respective r2 variability in the tower CO2 and CH4 records, with corresponding RWSE uncertainties of 1.3 gCM-2 d-1 (CO2) and 18.2 mg Cm-2 d-1 (CH4). Although the estimated annual CH4 emissions were small (gCm-2 yr-1) relative to Reco (\u3e180 gCm-2 yr-1), they reduced the across-site NECB by 23%and contributed to a global warming potential of approximately 165±128 gCO2eqm−2 yr−1 when considered over a 100 year time span. This model evaluation indicates a strong potential for using the TCF model approach to document landscape-scale variability in CO2 and CH4 fluxes, and to estimate the NECB for northern peatland and tundra ecosystems

    Carbon budget estimation of a subarctic catchment using adynamic ecosystem model at high spatial resolution

    Get PDF
    A large amount of organic carbon is stored in highlatitude soils. A substantial proportion of this carbon stock is vulnerable and may decompose rapidly due to temperature increases that are already greater than the global average. It is therefore crucial to quantify and understand carbon exchange between the atmosphere and subarctic/arctic ecosystems. In this paper, we combine an Arctic-enabled version of the process-based dynamic ecosystem model, LPJGUESS (version LPJG-WHyMe-TFM) with comprehensive observations of terrestrial and aquatic carbon fluxes to simulate long-term carbon exchange in a subarctic catchment at 50m resolution. Integrating the observed carbon fluxes from aquatic systems with the modeled terrestrial carbon fluxes across the whole catchment, we estimate that the area is a carbon sink at present and will become an even stronger carbon sink by 2080, which is mainly a result of a projected densification of birch forest and its encroachment into tundra heath. However, the magnitudes of the modeled sinks are very dependent on future atmospheric CO2 concentrations. Furthermore, comparisons of global warming potentials between two simulations with and without CO2 increase since 1960 reveal that the increased methane emission from the peatland could double the warming effects of the whole catchment by 2080 in the absence of CO2 fertilization of the vegetation. This is the first process-based model study of the temporal evolution of a catchment-level carbon budget at high spatial resolution, including both terrestrial and aquatic carbon. Though this study also highlights some limitations in modeling subarctic ecosystem responses to climate change, such as aquatic system flux dynamics, nutrient limitation, herbivory and other disturbances, and peatland expansion, our study provides one process-based approach to resolve the complexity of carbon cycling in subarctic ecosystems while simultaneously pointing out the key model developments for capturing complex subarctic processes
    corecore